DICITAL IMAGCKE
PLRLOCESSING
MATLADB NOTES

AKSHANSH CHAUDHARY

Digital Image Processing MATLAB Notes, First Edition
Copyright © 2013 Akshansh
ALL RIGHTS RESERVED.

Presented by: Akshansh Chaudhary
Graduate of BITS Pilani, Dubai Campus
Batch of 2011

Course content by: Dr. Jagadish Nayak
Then Faculty, BITS Pilani, Dubai Campus

Layout design by: AC Creations © 2013

The course content was prepared during Spring, 2014.
More content available at: www.Akshansh.weebly.com

DISCLAIMER: While the document has attempted to make the information as accurate as possible, the information on this document is for personal and/or
educational use only and is provided in good faith without any express or implied warranty. There is no guarantee given as to the accuracy or currency of any
individual items. The document does not accept responsibility for any loss or damage occasioned by use of the information contained and acknowledges
credit of author(s) where ever due. While the document makes every effort to ensure the availability and integrity of its resources, it cannot guarantee that
these will always be available, and/or free of any defects, including viruses. Users should take this into account when accessing the resources. All access and
use is at the risk of the user and owner reserves that right to control or deny access.

Information, notes, models, graph etc. provided about subjects, topics, units, courses and any other similar arrangements for course/paper, are an expression
to facilitate ease of learning and dissemination of views/personal understanding and as such they are not to be taken as a firm offer or undertaking. The
document reserves the right to discontinue or vary such subjects, topic, units, courses, or arrangements at any time without notice and to impose limitations
on accessibility in any course.

http://www.akshansh.weebly.com/

Editing Images in MATLAB
Programming Approach

Create an m file.

Use of an editor.
Ctrl+N

A new window opens.
This window is basically the area where all the commands will be written and all changes to the

image will be done here.

Now, start typing commands.

[eator Untited | 000 =)
FUBLISH = ® =
2 O g G meQ A - L & Hfmnsem
[i5lcompare ~ Comment % 4 %d 5 GoTo ~

Breakpoints Run Runand Runand | Advance

New Open Save
- - ~ =Pt v Indent oz o ({ Find ~ - - Time Advance

FILE EDIT MAVIGATE | BREAKFOINTS RUN

Untitled* =
=]

clc

close all:

oW R e

clear all;

script Ln 4 Col 1

"CLC, CLOSE ALL, CLEAR ALL" - Are used to remove all the previous commands used and files made.

Now, starting to use main commands:

IMREAD

Syntax:

x=imread('filename’)

Where x is the name of the image that we are uploading

Note: All the images (or anything) will be accessed from the main MATLAB Directory.
(Default directory is C:\Users\Akshansh\Documents\MATLAB)

Digital Image Processing MATLAB Notes — Akshansh Chaudhary

clc
close all;
clear all:;

o= d R

imread (filename, fmt)

imread (filename)
imread (URL, ...}
imread(...,Paraml,Vall, Param?,Val2l..)

il elp...

If the image is present in the current
director, no need to give the path.
Else, give the path.

PUBLISH

| DIP MATLABG 3 _2014m = |

- iml=imread("ATTO00Z27.Jipg") ! =
$Abowve coniinand adds this image to my program and names it iml.

LRI S R

Save your program.

Note: % is used to comment anything (as shown above, with green color)

IMSHOW

Syntax:
imshow(im1)

Digital Image Processing MATLAB Notes — Akshansh Chaudhary

c L ST

EUIT NAVIEATE Breakpoints Run Runand Runand | Advance

cave \1z| Compare =

,:.‘I"_,l:, - L] Find Files e
New Open

- - Eﬁlﬁil - - - - - Time Advance
FILE | | | BREAKFOINTS | RLUM h
| Untitled® =
iml=imread ("ATTO00Z27.Jpg") ! E

fibove command adds this image to my program and names it iml.

imshow (iml)

Fhbove command instructs MATLAE to show the image in another dialog box
% (once Program is Run)

=] & A = L R

After using the command, imshow(im1), use
Run Section Command.j‘

The image opens, as shown.

T Figure 1 = | 5 |-

File Edit View Insert Tools Desktop Window Help

NEde |k |RACDEL- @ 08| a1

Digital Image Processing MATLAB Notes — Akshansh Chaudhary

Component Separation

Once the image is there, let's try separating the components of the image.
We know that an RGB image has 3 components, Red, Green and Blue.

Seeing only the red component:

-

EDITOR PUBLIZH WIEWY
o8 O gl A
]
New Open Save i compare ¥ e
- - -

S |v‘ -
|

FILE

o [=

- @ (=] Run Section

Run Runand Runand E}Adwyme
Time Advance

- | -

| BREAKFOINTS |

RUM

[DIP MATLAB 6_3_2014.m* =

1= iml=imread ("ATTO0027.jpg")
2

3

4 — imshow (iml)

5

& % (once Programa is Run)

7

g - imZ=iml (:,:,1);

9

10

11 — figure, imshow(imZ2):

1z

13 FDirectly using imshow (im2)
14

Click on Run Section.
A dialog box opens in a separate window.

Bl Figure 1 - v -

fhbove coniinand adds this image to my program and names it iml.

Fhbove command instructs MATLAE to show the image in another dialog box

FhAbhowve command puts only the red component of my image in im2.

Fhbove command is used to make the figure come in a separate window.
will overwrite the existing image window.

— | r
== = | B Figure 2

File Edit View Inset Tools Desktop Window Help

File Edit View Insert Tools Desktop Window Help k]

Dode | kRO EL-|E 0B a0

DEde | h|AKOOEL- S 0EH D

{Original Image)

{Image with only Red Component)

Digital Image Processing MATLAB Notes — Akshansh Chaudhary

Observation:

File Edit

= YRS

Insert Tools

NOVEN-20EH DO

View Desktop Window Help

Consider this image.
Now, if we want to show the amount of red.
(or, remove green and blue from the image.)

RGB2GRAY

File Edit

ju@u-g 3 | R

Insert Tools Desktop Window Help E

STDEN- S0 oD

View

Using the command
im8=im7(: '_/?,. Show only Red componen

Notice that in my image whichever part contained red,
that is white, rest is black.
{(White, yellow, magenta colors contain red)

Now, if we want to convert our image from RBG format (colored) to Gray (Grayscale), we can use

this command.

Syntax:

im3=rgb2gray(im1);

This indicates that | want to see im1 in grayscale.

1 - iml=imread ('ATT00027.3pg"): L
2 3Lbowve coniinand adds this image to my program and names it iml.
3
4 - im=show (iml)
5 3hbove command instructs MATLAR to show the image in another dialog box
& % (once Programa is Run)
7
g - im2=iml(:,:,1):
9 3hbove command puts only the red component of my image in im2.
10
11 5 figure, imshow(im2);
12 Fhbhove command is used to make the figure come in a sSeparate window.
13 FDirectly using imshow(im?) will overwrite the existing image window.
14
15 — im3=rgb2gray (iml) ;
16 — figure, imshow (im3):
17 Fhbowe command converts from RGE format to Gray and displays the result i
18 Fanother window.
Note: As we go on writing commands and doing "Run Section”
there will be a time when multiple windows will keep opening.
5o, to prevent that, comment the commands not needed.

Digital Image Processing MATLAB Notes — Akshansh Chaudhary

[}

dle Edit View Inset Tools Desktop Window Help File Edit View Insert Tools Desktop Window Help

150S kAU ELHL- |2/ 08| nD DEH2 k| ARAU9EL- 2/ 0H D

{Grayscale Image) (Image with only R component)

Figure S_hOWS B f_ew differences between grayscale image Note: As one is grayscale and other is only R component, so,
and the image with only red component. the difference will be seen in terms of the scale of the images
MNote, that the change may vary from image to image {and, {some parts light, some parts dark)

may/may not be visible} |

Negative of Image

We are making negative of the image.
Idea: 255-(Image)=Negative

Note:

RGB Format is used only for display purpose and to view the image, no processing is done.
To process the image, it is converted to HIS Format.

(HIS - Hue, Intensity and Saturation format)

im3=rgbl2gray(iml) ;

figure, imshow(im3):

Fabove command converts from RGE format to Gray and displays the result in
Fanother window.

im4=255-1im3;

figure, imshow(im4):
Fhbove command gives a negative of the image im3.

Digital Image Processing MATLAB Notes — Akshansh Chaudhary

{Grayscale Image)

{Negative of Grayscale Image)

Note: We can also do negative of an RGB image.

IMHIST

This command is used to make histogram of the image.

figure,imhist (im3) ;

FThiz command shows the histogram of my image im3.

ENote that histogram can be got only for grayscale image.

This command is used to make histogram of the image.

figure,imhist (im3);
$This command shows the histogram of my image im3.
tNote that histogram can be got only for grayscale image.

u Figure 2

= | B

File

Edit View Insert Tools Desktop Window Help

DNEEL| RO DEL- I 0B 0D

MNote that histogram can be made only of grayscale image.
If we do figure, imhist(im 1), we wont get anything.

Perrint A Fal 3 |

4000

3500

3000

2500

This is the histogram of the image. 1

50 100 150 200 250

Digital Image Processing MATLAB Notes — Akshansh Chaudhary

HISTEQ

Doing histogram equalization of the image.

R = [E Iy . e
. Figure 3 ‘ ‘qﬁtﬁz-
File Edit View Inset Tools Desktop Window Help] File Edit View Inset Tools Desktop Window Help El
Ddde | ARODEA- |2 |0EHE 0O TEdAl L AR TmDE L2 0R nO
4000 / . 6000 \ .
3500} /-‘lﬂ
Before 5000 - er 1
3000} 4
4000 | J
2600 | 4
2000 3000 | 1
1500
2000 4
1000
. 1000} 4
: ' ’ ‘
1 1 L T
0 50 100 150 200 250 0 50 100 150 200 20

FFT2

ft2=fft2 (im3) ;
figure, imshow(ft2

This is the image after Fourier
transform.

Note that we can do itfor a
colored image also.

{right now its for grayscale).

Although, we may get nearly the
same result or very little difference;
to be detected by human eye.

Digital Image Processing MATLAB Notes — Akshansh Chaudhary

Note that for colored and grayscale images, this difference in
fourier transform can be seen.

Note that the image has complex values. For taking real values, use abs command.

ABS

Using abs command, the function tries to adjust the intensity to zero or full intensity.
So, the output is wh_ite or black COMPLETELY.

frt3i=ab= (ft2):

figure, imshow(ft3):;

¥This function shows absolute wvalue of the Fourier transform
Frre [E=RRE
File Edit View Inset Tools Desktop Window Help El

DEHe | | AKOBDEL-|S | 0E o

Digital Image Processing MATLAB Notes — Akshansh Chaudhary

MAT2GRAY

Converts Matrix to Grayscale image.

fri=£ffc2 (iml) ;
ft2=abs (ftl) ;
figure, imshow (ft2) ;
fti3=matZgray(ft2):
figure, imshow(ft3):;

ABS MAT2GRAY

For using MAT2GRAY Command, the FOURIER Transform of
image is required, followed by making it in ABSOLUTE form.

LOG

Note:

We saw that the frequency domain transform gave the results as black and white of my image. So,
we use logarithmic transform.

Applying log transformation to an image will expand its low valued pixels to a higher level and has
little effect on higher valued pixels so in other words it enhances image in such a way that it
highlights minor details of an image.

Commands:
a=imread('ATT00027.jpg');
a=im2double(a);

X=a;

[r,c]=size(a);

C=4;

fori=1:r

forj=1:c

Digital Image Processing MATLAB Notes — Akshansh Chaudhary

x(i,j)=C*log(1+a(i,j));

end

end

subplot(1,2,1)

imshow(a);

title('Before Transformation');
subplot(1,2,2);

imshow(x);

title('After Transformation');

B Figure 1 - ™ . _..- = E |
File Edit | View | Insert Tools Desktop Window Help N

NEES | b ARXTDE LA |2 0E| D

Before Transformation After Transformation

IFFT2, UINT8

IFFT2 command is used to do the inverse Fourier transform of the image.
UINT8 command is used to convert the image to an 8 bit signed integer.

fr2=ffc2 (im3) ;

% ft2=abs(ft2):
figure, imshow (££2) ;
fr3=ifftz (fc2);
ft3=uints (ft3);
figure, imshow (ft3);

Digital Image Processing MATLAB Notes — Akshansh Chaudhary

Fourier transform of the grayscale image. Inverse Fourier transform gives the image back.

ROT90

Note: Image rotation can only be done to 2D image.
That is, we can use it only for grayscale images.

s saamersan g e g R

If_’_\fl 2 => Rotate image by 290 degrees anticlockwise

imS=rotl0 (im3, 2) !
fAhove command i=s used to rotate the image.

figure, imshow(im5);

Digital Image Processing MATLAB Notes — Akshansh Chaudhary

Creating a basic GUI and reading images
from directory

- b=
£+ open Variable {7 Run and Time : [Set Path 'S} Request Support
Simulink La H
e [Z ClearWorkspace v [Clear Commands = Library v idParalel v OAddOns v
WARIABLE | CODE | SIMULINK | ENVIRONMENT | RESOURCES . . o AN

Documents » MATLAB

Command Window ON \Workspace

fx >» guide Mame = Value

Open MATLAB and type Guide in the command window

4| i

Command History

:'“"End
...... %—— 06-03-2014 13:33 —-%
B-%-- 13-03-2014 13:58 --%

Dialog box opens

fe o> B GUIDE Quick Start EBE

Create Mew GUI EEPEH Existing GUI|)
T

GUIDE templates Preview

.| Blank GUI (Default)

4\ GUIwith Uicontrols
4\ GUI with Axes and Menu
4\ Modal Question Dialog
BLANK
ave new figure as: | C\Users\Akshansh\Documents\ MATLAB\ur Browse...
[K] [Cancel] [Help l

Select Blank GUI (Default) option if creating a new one,
or, Open Existing GUI.
Tick the Check Box to save the figure.

Note: "GUIDE - Graphical User Interface Development Environment"

Digital Image Processing MATLAB Notes — Akshansh Chaudhary

s
Comment % i’# ﬁ

LY
rarargout = DIP_27_3_2014(varargin) g | o] eXeCUte
i 2014 MATLAE code for DIF_27_3_2014.fig
' 27_3_ 2014, by itself, creates a new DIP_27_3 2014 or raises the existing
igleton*.

: DIP 27 3 2014 t tl | dle t DIP 27 3 2014 Tt 1 dle t NOte:

. exizting singleccar. T As the file is saved (can be saved later also), the

' 27_3_2014('CALLBACK',hObject,eventData, handles,...) calls the local m flle 1S Created along W'th It.

iction named CALLBACK in DIP 27_3_2014.M with the given input arguments. It |S the place Where a” the COde for my program |S

| 27 3 2014('Property’,'Value',...) creates a new DIF 27 3 2014 or raises WWEITIEN and execution IS done.
.ating singleton®*. Starting from the left, property walue pairs are

ilied to the GUI before DIF_27_3 2014 OpeningFcn gets called. 2An

‘ecognized property name or invalid value makes property applicatipn

ip. All inputs are passed to DIP_27_3_ 2014 CpeningFcn via varargin.

2 GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
itance to run (singleton)™.

1: GUIDE, GUIDATA, GUIHANDLES

it 2002-2006 The MathWorks, Inc.

: above text to modify the response to help DIF 27 3 2014
lified by GUIDE v2.5 27-Mar-2014 16:48:31

iitialization code - DO NOT EDIT

e, — a

This opens a new GUI dialog box as shown -

-
I untitled1.fig E=HECE!

File Edit View Layout Tools Help

NCW sMm9c aBhd Q% >
E -~

4 [

Tag: figurel Current Point: [35, 266] Position: [520, 345, 595, 455]

—

Digital Image Processing MATLAB Notes — Akshansh Chaudhary

Let's say we make a List Box.
As | aim to load the image, | have to put the images in the MATLAB Directory so that the images can
be accessed from there directly while coding is done.

L’I:I ID IE v % E % New Variable @ Analyze Code @ % @ Preferences @ @ Community
Comp P g Layout

ow

@
Current MATLAB Directory. We have to go there and put

Error using cd

T00001.jpg Cannot CD to C:\Users\Akshansh\AppData‘\Local\Temp (Name is nonexistent or not a directory).
T00002,j i
Ipg the images there.
T00004.jpg Error in tempdir (line)
T00006.jpg curr_dir = cd(tmp_dir);
T00012.jpg
T00013.jpg

Error in tempname (line 18)

T00014.jpg dirname = tempdir;

T00015.jpg

gggi?ji: Error in gumidetemplate/processDialogResult (line 160)

T00023.jpg temp = tempname;

gggfﬁj;:? Error in gumidetemplate/dialogCallback (line 104) L
T00027 jpg processDialogResult (quickstartpanel);

i,li:q Warning: Error occurred while evaluating listener callback. ’V

Tl ._ .
~ | 4 | Search MaTLAB

® Users » Akshansh » My Documents » MATLAB

Include in library = Share with = Slide show Burn Mew folder
hotos - - -
Irive E -~ ‘éﬁ
g e i i
3 -3
:_ Arnazing 5cene ATTO0001.jpg ATTO0002.jpg
fideo Xpres in Burma.gif
usly Visuali: 5
” Put your images here.
e
aciations ¢ u L
JErmester
ATTO0012,jpg ATT00013.jpg
nts = - -
ATTO0017 jpg ATT00027 jpg
= e =
P -~ -
-~ “ L]
< “
o &
3 34
k() < b |
W (D) DIP1.m untitled fig untitled.m untitledl fig
(F) v — .

items State: 22 Shared

Digital Image Processing MATLAB Notes — Akshansh Chaudhary

In the GUI window, there is an AXES option.
Let's make two AXIS. One for the original image and other for the changed image.

eautifying it, Put a panel first and then put Axes over it as shown.

B
JOoHd $2B9 " | FHLEHE EEERY P

|F‘|:rp—up Menu 'rl - Panel

BJ % |®) [~
eI

,

File Edit View Layout Tools Help

Add «SB90 &aB5d @%b

|F‘Dp—up Menu T] ~Panel

axes’

o

ActiveX Control |

Aipg

Digital Image Processing MATLAB Notes — Akshansh Chaudhary

Double click on Pop up menu opens Property Inspector window.

r@ Inspector: axes (@x. E@g1
V)| o=
[01] o
AlimMode auto =
ActivePosition... position |
AmbientLight... — 1
BeingDeleted off
Box off hd
Busyhction gueue A
ButtonDownFcn &
CLim [01]
ClimMode auto <
CameraPosition [0.50.59.16]
CameraP ositio.. auto <
CameraTarget [0.50505]
CameraTarget... auto <
CamerallpVect... [010]
CamerallpVect... auto =
CameraViewA... 6.6086103... &
CameraViewA... auto =
Clipping on =
Color /
| ColorOrder (1 NI ~
—————————

pony

¥ untitledl.fig

=

File Edit View

Layout Tools Help r@ Inspector: uicontr... | == =® _|1
DEd s2m90 | 2EHhd B% P i =
FontWeight normal |
ForegroundCo... []
::Pup_upfﬂenu v:: Panel HandleVisibility on -
’7 HitTest on -
. Hari 1Alig... center i
String le on -
Pop-up Menu n el "4
1.0 &
1.0 @7
0.0 &
[529.538 17....
ighl... on -
[0.0101]
I @ p-up Menu & [=
popupm... =
popupm.. &
ing &
UIContextMenu <Mone» i
Units characters =| |
UserData ﬂ [0 dou.. &
1ol [0 e M
T 1 T 1 [|
1 b

Tag: popupmenul

Current Point: [331, 334]

Position: [26, 385, 83, 20]

Digital Image Processing MATLAB Notes — Akshansh Chaudhary

Creating a text file -
Open Notepad and write the names of all the file names in your current directory.

)
| Untitled - Notepad
P

¢ el

File Edit Format View Help

See that the names in the current directory (without the extension like .jpeg) are being copy pasted
in the Notepad.

[; | =B 2] 9 fixt - Notepad] | = | B [

- — —
— : :

@'\‘J‘v J. « MyDocuments » MATLAB < | 43 M| Search MATLAR o M| File_Edit Format View Help I

Amazing Scene in Burma

Organize v [E] Preview = Sharewith = Slideshow Print E-mail » & ~ I @ ﬁgggggﬁ
£ MediaFire -~ - . V) — i ﬁggggg‘él
& iCloud Photos I 31 7
k& Google Drive R
3 @i Amazing Scene ATT00001jpg ATTO0002jpg ATT00004jpg

J Box Sync in Burma.gif
J Audio - Video Xpres

¥ -

| Marvellously Visuali ﬁ

|| @College -

|| BITS Associations P AT
)

J Second Semester

L Libraries
& Documents
@& Music
[&5] Pictures
E Videos =

m

ATT00015.jpg ATT00016.jpg ATTO00017 jpg

ATT00023 jpg

=
_
<
<
=z
=
<+
&5

-

AT

) Homegroup L

1% Computer
&, Local Disk (C:)
s RECOVERY (D:) E.

ATT00025.jpg ATT00026.gif ATT00027 jpg DIPL.m

&3 CD Drive (F)
4 CD Drive (G:)

€ Network

[ey ATT00006.jpg
B JPEG image

fibct

I N

State: BB Shared

45

Testjpg untitled fig

4
Tags: Add atag

Date taken: 09-10-2010 11:39

e

-
P
<5
£
P
P
=
P
Pl

untitled.m

Then, save the notepad file in the same MATLAB Directory
(By default, its C:\Users\Akshansh\Documents\MATLAB)

Digital Image Processing MATLAB Notes — Akshansh Chaudhary

=i

@Ov| .. ¥ Akshansh » My Documents » MATLAB

- | || Search maTLAB

Organize « MNew folder = - I@
4 9% Favorites Name Date modified Type
B Desktop Mo items match your search.
4 Downloads
“El Recent Places
%% Dropbox
L MediaFire
| iCloud Photas
& Google Drive
& OneDrive
1. BoxSync
. Audic - Video Xp
. Marvelloushy Vist =« | L] r
File name: | f*.bct A
Save as type: le Documents (*.bd) A
= Hide Folders Encoding: | ANSI v] I Save I [Cancel
Share with * Slide(@ untitled1.fig - I —— =@ =
r — A"
(| File Edit View Layout Tools Help @ Inspector: uicontr... | = | = X |
= [EECITET TS 1. T1-C LI (BT
Amazing Scene A FontWeight normal >
in Burma.gif ForegroundCo...]
::pup_up Menu .:: ~Panel HandleVisibility on -
HitTest on >
avas? HaorizontalAlig... center -
Interruptible on o
KeyPressFcn &
ListboxTop 1.0 &
Max 1.0 Fdm
l Min 0.0 &
.
String g
ATTO = 52 .
E fitut - Notepad |:7| Amazing Scene in Burma
- - - ATTOOOO1
| File Edit Format Wiew Help ATTO0002 ol
’¥I ATTOO0OO4 5
ATTO0006 COpy paste here c
1 &
all the file names. |§ ¢

1:%

[Teapopuprmenul

Current Point: [423, 7]

Position: [26, 385, 89, 20]

Digital Image Processing MATLAB Notes — Akshansh Chaudhary

Now,
We can also click on the properties and change the colors of the background and its title, etc.

As we save this program, it creates an m file.

hseﬂ%ﬁ =

A=
BESEE
“ [untitledl
1 function wvarargout = untitledl (varargin)
2 E% UNTITLED1 MATLAB code for untitledl.fig |
3 E UNTITLED1, by itself, creates a new UNTITLED1 or raises the existingl
4 % singleton*.
5 % l
[% H = UNTITLED1 returns the handle to a new UNTITLED1 or the handle to
7 E the existing singleton*.
a8 %
9 % UNTITLED] ('CALLBACK' hCbject,eventData, handles,...) calls the local
10 E function named CALLEBACEK in UNTITLED1.M with the given input arguments.
11 % |
12 % UNTITLED]1('Property', '"Value',...}) creates a new UNTITLED1 or raises the
13 % existing singleton¥®. Starting from the left, property value pairs a.lre
14 E applied to the GUI before untitledl OpeningFcn gets called. An
15 % unrecognized property name or invalid walue makes property application
16 % stop. All inputs are passed to untitledl OpeningFecn via wvarargin.
17 *
18 % #S5ee GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
13 % instance to run (singleton)™.
20 %
21 % See also: GUIDE, GUIDATA, GUIHANDLES
22
23 % Edit the abowve text to modify the response to help untitledl
24
25 % Last Modified by GUIDE v2.5 27-Mar-2014 14:26:57
26
27 % Begin initialization code - DO NOT EDIT
28 — gui_Singleton = 1;
A= gui State = struct('gui Name', mfilename,
30 "gui Singleton', gui Singleton,

Digital Image Processing MATLAB Notes — Akshansh Chaudhary

-
- untitled

1

Dialog box opens.

These values are not needed for the image.

We need to remove the values
Go back to figure window.
Double click on AXES. A dialog box opens.

—
@ Inspector: axes {M..@Eu

S

Units
UserData
View
Visible
KAxisLocation
KColor
XDir
XGrid
XLim
KLimMode
KMinorGrid
XMinorTick
XScale
KTick
KTickLabel
XTickLabelMode
KTickMode
YhAxisLocation
Y¥Color
¥Dir

B ©0 dou... ¢

(ED ro;0.5000:1]
o #

-
characters =

[0.090.0]

on M
bottom =
|

normal =
off

[01]

auto o
off >
off b

linear

m

auto
auto
left

|

normal b

i

Digital Image Processing MATLAB Notes — Akshansh Chaudhary

N
rCoIor z Eﬂ [
.DD D... characters + ©
...... 04 dou.. @ ||
[| HEEENEN [0.090.0]
OdO000EmO. on | |
O NEEm bottom =
Od000NEEN ™)
DDDD.... normal -
Od000MEEN XGrid off -
OdO000NMEEN # XLim [01] 3
More Colors... XLimMeode auto -
oK] ’ e AMinorGrid off - -
XMinorTick off -
HScale linear -
ATick (ED| 1o; 0500017 |F|| [
Make X color as || e 5o ’

N XTickLabelMode auto - -
Whlte. XTickMode auto -
Wh y'? YAxisLocation left -l |
Because we YCokr —
are getting a blagh_.... u |8
axes as a boundary
in AXES, :

| ption: 12,14, 141, 117]

m__l WWUITE & CWVLC IURILS =

@ Inspector: axes(a:c...'. = B % |
[B4]] =1 =
Units characters =+
UszerData ﬂ [0:0 dou... &
View [0.080.0]
r}ﬂ—lck g Visible on -
KhzxisLocation bottom -
gg XColor 40—
10 KDir normal -
KGrid off -
KLim [01]
Remove all LimMode suto -
these values. e .
inorli off -
X5cale linear -
) [0: 0500017 |=
KTickLabel = 0 &
Append l | Delete |
[auto <
KTickMode auto -
YhxisLocation left -
Y¥Color |
Y¥Dir normal -

Digital Image Processing MATLAB Notes — Akshansh Chaudhary

Similarly do for Y axes.

Save the GUI and open m file
Run it.

All boundaries gone.

5] untitledLfig . - o= == = |
File Edit View Layout Tools Help |

ET IR B I FEL I e

D

We find that all borders are gone.

‘Amazmg S.. '1

Tag: axes2 Current Point: [322, 43 pos!lcm’. !!! !’ !ﬂ !” r 1

Now, make a duplicate of the (Axes+Panel).
One will be input, other will be output.

r@éntitledlﬁg 2 2 Inspector: uipanel J=1E 2 23_ l
File Edit View Layout Tools Help | i w5 = I
NEEEIEE R - T I LI S ormal %+
FantMame M5 Sans . & 1.
FontSize 8.0 &
= FontUnits peints - -
|Amazing 5. 'l FontWeight normal -
ForegroundCo... | |
B ES HandleVisibility on =
HighlightColor =
b @ HitTest on - -
=] Interruptible on -
L _. Position [27.419.535 ...] |
- ResizeFecn &
Tnput Image| SelectionHighl... on ~liL
E ShadowColor [il =
Tag uipanel? &
- A e oL
TitlePosition lefttop <
UIContextMenu <Mone> -
Units characters = B
UserData ﬂ [0 dou... &
L Visihle nn = il) o
; ; ; T T ; n
1 3
Tag: uipanel2 Current Point; [329, 412] Position: [138, 255, 162, 151]

Digital Image Processing MATLAB Notes — Akshansh Chaudhary

Add a push button

File Edit

Change its properties if needed.

*] untitled1f

File Edit

t [326,132]

Position: [39, 255, 101, 51]

@ Inspector: uicontr... = |[E]
View Layout Tools Help | !: '= -
DEd 229 0¢ | sBMdb| G@A% B g on |
CreateFcn) &
DeleteFen) &
Enable on =
|Amazing Scene in Burma v] l Extent [00124146...
Fontfngle normal -
Axes3 FontMame M5 5ans .. &
FontSize 8.0 &
FontUnits points (=
FontWeight normal -
l =
HandleVisibility on -
HitTest on -
HaorizontalAlig... center -
Interruptible on B
KeyPressFen e &
ListboxTop 1.0 &
Masx 1.0 @
Min 0.0 &
Position [76519.538 2... i
= 1 T 1 T 1
l @ Inspector: uicontr... | = &= _.l
View Layout Tools Help | | E: .=
NEH 229 C 2EBA S| P | Fogoundo. @ i
HandleVisibility on @ R |.
HitTest on 9
HarizontalAlig... center &7 R
|AmazingScenein Burma VI Interruptible on -
KeyPressFen &
axes3 ListboxTop 10 s |
Max 1.0 &
- = - Min 0.0 ¢ |
Push Butto Position [7.619.538 2...
L o L | SelectionHighl... on 9 -
SliderStep [0.0101]
ush Button &
pushbutt.. =
Tag pushbutt... & 3
TooltipString & -
UIContextMenu <Mone=
Units characters
UszerData ﬂ [0x0 dow.. & 1
Value @ [0] | |
Vicikl -

Digital Image Processing MATLAB Notes — Akshansh Chaudhary

Save it and Run it.

=]
change in popupmenul.
(hCbject, eventdata, handles)
nenul (see GCBO)
: defined in a future version of MATLAE
1andles and user data (see GUIDATA)

jet (hCbject, 'S5tring')) returns popupmenul contents
,'"Value')} returns selected item from popupmenul

creation, after setting all properties.
1(rObject, eventdata, handles)
nenul (see GCBO)

: defined in a future version of MATLAE

not created until after all CreateFcns= called

sually have a white background on Windows.

1.

:t, 'BackgroundColor'), get (0, 'defaultUicontrolBack
jlor', 'white');

33 in pushbuttonl.

c(hObject, eventdata, handles)

ittonl (see GCBQ)

: defined in a future version of MATLAE

wandles and user data (see GUIDATZ) _

Select image and press process.
Nothing happens, as, there is no code written for my GUI.

Digital Image Processing MATLAB Notes — Akshansh Chaudhary

BITS PILANI DUBAI CAMPUS
MATLAB ASSIGNMENT QUESTIONS FOR DIGITAL IMAGE PROCESSING AND IMAGE
PROCESSING

Note: ANY FIVE out of six questions have to be implemented in MATLAB.
Hand written sheets of program codes have to be submitted (not the soft copy).

Question 1.
Write a MATLAB based GUI program, to illustrate the power law transformation

Question 2.
Write a MATLAB based GUI program, to illustrate intensity level slicing and bit level slicing

Question 3.
Write a MATLAB based GUI program to illustrate Steganography.

Question 4.
Write a GUI based MATLAB program to detect the boundary of the object using Hough transform.

Question 5.
Write a MATLAB based GUI program to illustrate removal of periodic noise from an image using a Notch Filter
(Band Stop Filter).

Question 6.
Write a MATLAB based GUI program to illustrate the effect of Atmospheric Turbulence on an image and how the
image can be retrieved from the noise.

Lecture Notes

http://en.wikipedia.org/wiki/Steganography
http://akshansh.weebly.com/jagnayak-dip.html

DIP (EEE F435)
MATLAB Assignment Program

1 POWER LAW TRANSFORMATION

unction varargout = Gamma_Transform(varargin)
% GAMMA_TRANSFORM MATLAB code for Gamma_Transform.fig

% GAMMA_TRANSFORM, by itself, creates a new GAMMA_TRANSFORM or raises
the existing

% singleton*.

%

% H = GAMMA_TRANSFORM returns the handle to a new GAMMA TRANSFORM or the
handle to

% the existing singleton*.

%

% GAMMA_TRANSFORM("CALLBACK" ,hObject,eventData,handles,...) calls the
local

% function named CALLBACK in GAMMA_TRANSFORM.M with the given input
arguments.

%

% GAMMA_TRANSFORM("Property”, "Value®,...) creates a new GAMMA_TRANSFORM
or raises the

% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before Gamma_Transform OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to Gamma Transform_ OpeningFcn via
varargin.

%

% *See GUI Options on GUIDE"s Tools menu. Choose "GUI allows only one
% instance to run (singleton)".

%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help Gamma_Transform
% Last Modified by GUIDE v2.5 14-May-2014 22:44:13

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui_State = struct("gui_Name~", mfilename, ...
"gui_Singleton®, gui_Singleton, ...
"gui_OpeningFcn®, @Gamma_Transform_ OpeningFcn, ...
"gui_OutputFcn®, @Gamma_Transform_OutputFcn, ...
"gui_lLayoutFcn®, [1 , ---
"gui_Callback"®, [D:

it nargin && ischar(varargin{l})

gui_State.gui_Callback = str2func(varargin{l});
end

if nargout

[varargout{l:nargout}] = gui_mainfcn(gui_State, varargin{:});
else

gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before Gamma_Transform is made visible.

function Gamma_Transform_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to Gamma_Transform (see VARARGIN)

% Choose default command line output for Gamma_Transform
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes Gamma_Transform wait for user response (see UIRESUME)
% uiwait(handles.figurel);

% —--- Outputs from this function are returned to the command line.

function varargout = Gamma_Transform_OutputFcn(hObject, eventdata, handles)
4 varargout cell array for returning output args (see VARARGOUT);

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

XX

% Get default command line output from handles structure
varargout{l} = handles.output;

% --- Executes on selection change in listboxl.

function listboxl Callback(hObject, eventdata, handles)

% hObject handle to listboxl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = cellstr(get(hObject,"String")) returns listboxl contents
as cell array
% contents{get(hObject, "Value®)} returns selected item from listboxl

global im;

contents = cellstr(get(hObject, "String”));
im=contents{get(hObject, "Value®)};
im=strcat(im,".jpg");

im=imread(im);

axes(handles.axesl);

imshow(im);

% --- Executes during object creation, after setting all properties.
function listboxl CreateFcn(hObject, eventdata, handles)

% hObject handle to listbox1l (see GCBO)

» eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

©

% Hint: listbox controls usually have a white background on Windows.
% See ISPC and COMPUTER.
it ispc && isequal(get(hObject, "BackgroundColor™),
get(0, "defaultUicontrolBackgroundColor ™))
set(hObject, "BackgroundColor™®, "white®);
end

function editl_Callback(hObject, eventdata, handles)

% hObject handle to editl (see GCBO)

» eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

XXX

=4

t» Hints: get(hObject,"String") returns contents of editl as text
% str2double(get(hObject, "String®")) returns contents of editl as a
double

global cval;
% cval=get(hObject,"String”);
cval=str2double(get(hObject, "String"));

% --- Executes during object creation, after setting all properties.
function editl_CreateFcn(hObject, eventdata, handles)

% hObject handle to editl (see GCBO)

» eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

XX

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
it ispc && isequal(get(hObject, "BackgroundColor™),
get(0, "defaultUicontrolBackgroundColor™))
set(hObject, "BackgroundColor™, "white");
end

% --- Executes on button press in pushbuttonl.

function pushbuttonl_Callback(hObject, eventdata, handles)

% hObject handle to pushbuttonl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

global im;

global im2;
im=rgb2gray(im);
im2=im2double(im);
axes(handles.axesl);
imshow(im);

function edit2_Callback(hObject, eventdata, handles)

% hObject handle to edit2 (see GCBO)

» eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

o © =

% Hints: get(hObject,"String®) returns contents of edit2 as text

% str2double(get(hObject, "String")) returns contents of edit2 as a

double

global gval;
% gval=get(hObject, "Value™)
gval=str2double(get(hObject, "String"));

% --- Executes during object creation, after setting all properties.
function edit2_CreateFcn(hObject, eventdata, handles)

% hObject handle to edit2 (see GCBO)

» eventdata reserved - to be defined in a future version of MATLAB

©

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
it ispc && isequal(get(hObject, "BackgroundColor™),
get(0, "defaultUicontrolBackgroundColor ™))
set(hObject, "BackgroundColor”®, "white®);
end

% --- Executes on button press in pushbutton3.

function pushbutton3_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

global im2;
global im3;
global cval;
global gval;

[m,n]=size(im2);
for i=1:m

for j=1:n
im3(i,j)=cval*((im2(i,j)/255).~gval);
end
end

axes(handles.axes2);
imshow(im3);

2

2.1 INTENSITY LEVEL SLICING

function varargout = Intensity Level _Slicing(varargin)
% INTENSITY_LEVEL_SLICING MATLAB code for Intensity Level Slicing.fig

% INTENSITY_LEVEL_SLICING, by itself, creates a new
INTENSITY_LEVEL_SLICING or raises the existing

% singleton*.

%

% H = INTENSITY_LEVEL _SLICING returns the handle to a new
INTENSITY_ LEVEL SLICING or the handle to

% the existing singleton*.

%

% INTENSITY_LEVEL SLICING("CALLBACK®,hObject,eventData,handles,...)
calls the local

% function named CALLBACK in INTENSITY_LEVEL SLICING.M with the given
input arguments.

%

% INTENSITY_LEVEL_SLICING("Property®,“Value®,...) creates a new
INTENSITY_ LEVEL SLICING or raises the

% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before Intensity Level Slicing OpeningFcn gets
called. An

% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to Intensity Level Slicing OpeningFcn via
varargin.

%

% *See GUI Options on GUIDE"s Tools menu. Choose "GUI allows only one

% instance to run (singleton)".

%
% See also: GUIDE, GUIDATA, GUIHANDLES

=4

4 Edit the above text to modify the response to help Intensity Level Slicing

=4

% Last Modified by GUIDE v2.5 10-May-2014 15:59:34

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;

gui_State = struct("gui_Name”,
"gui_Singleton®,
"gui_OpeningFcn®,
"gui_OutputFcn®,
"gui_LayoutFcn*®,

mfilename,
gui_Singleton,
@Intensity_Level_Slicing_OpeningFcn, ...
@Intensity_Level_Slicing_OutputFcn, ...
. ---

"gui_Callback", [D;
if nargin && ischar(varargin{l})
gui_State.gui_Callback = str2func(varargin{l});
end

iT nargout

[varargout{l:nargout}] = gui_mainfcn(gui_State, varargin{:});
else

gui_mainfcn(gui_State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before Intensity Level Slicing is made visible.
function Intensity Level Slicing OpeningFcn(hObject, eventdata, handles,
varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to Intensity Level Slicing (see VARARGIN)

% Choose default command line output for Intensity_Level_Slicing
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes Intensity Level Slicing wait for user response (see UIRESUME)
% uiwait(handles.figurel);

% —--- Outputs from this function are returned to the command line.
function varargout = Intensity Level _Slicing OutputFcn(hObject, eventdata,
handles)

6t varargout
% hObject

4 eventdata
% handles

cell array for returning output args (see VARARGOUT);
handle to figure

reserved - to be defined in a future version of MATLAB
structure with handles and user data (see GUIDATA)

© o

% Get default command line output from handles structure
varargout{l} = handles.output;

% --- Executes on selection change in listboxl.

function listboxl Callback(hObject, eventdata, handles)

% hObject handle to listboxl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = cellstr(get(hObject,"String")) returns listboxl contents
as cell array
% contents{get(hObject, "Value®)} returns selected item from listboxl

global iml;

global im2;

global con;

con = cellstr(get(hObject, "String"));
iml=con{get(hObject, "Value")};
iml=strcat(iml, "_.jpg");
iml=imread(iml);

im2=iml;

axes(handles.axesl);

imshow(iml);

% --- Executes during object creation, after setting all properties.
function listboxl CreateFcn(hObject, eventdata, handles)

% hObject handle to listbox1l (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

=4

% Hint: listbox controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal (get(hObject, "BackgroundColor®),
get(0, "defaultUicontrolBackgroundColor ™))
set(hObject, "BackgroundColor”®, "white®);
end

% --- Executes on button press in pushbuttonl.

function pushbuttonl_Callback(hObject, eventdata, handles)

% hObject handle to pushbuttonl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

global iml;

global im2;
im2=rgb2gray(iml);
axes(handles.axesl);
imshow(im2);

% --- Executes on slider movement.

function sliderl_Callback(hObject, eventdata, handles)

% hObject handle to sliderl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

©

X

» Hints: get(hObject, "Value®) returns position of slider
% get(hObject, "Min") and get(hObject,"Max") to determine range of
slider

global minval;
global maxval;
global tval;
tval=get(hObject, "Value");
if (tval>maxval || tval<minval)
msgbox(sprintf("Please choose Threshold value between Maximum and
Minimum®), "Error”®, "Error");
return
end
datal = strcat(num2str(tval));
set(handles.textl, "String”,datal);

% --- Executes during object creation, after setting all properties.
function sliderl CreateFcn(hObject, eventdata, handles)

% hObject handle to sliderl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: slider controls usually have a light gray background.
it isequal(get(hObject, "BackgroundColor™),
get(0, "defaultUicontrolBackgroundCollor™))
set(hObject, "BackgroundColor®,[-9 .9 .9]D);
end

% --- Executes on slider movement.

function slider2_Callback(hObject, eventdata, handles)

% hObject handle to slider2 (see GCBO)

» eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

o © =

% Hints: get(hObject, "Value®) returns position of slider

% get(hObject, *Min®") and get(hObject,"Max") to determine range of
slider
% --- Executes during object creation, after setting all properties.

global maxval;

global minval;

minval=get(hObject, "Value®);

if (minval>maxval)
msgbox(sprintf("Please choose Min. Value < Max Value®),"Error”, "Error®);
return

end

data2 = strcat(num2str(minval));
set(handles.text2, "String”,data2);

function slider2 CreateFcn(hObject, eventdata, handles)

% hObject handle to slider2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: slider controls usually have a light gray background.
it isequal(get(hObject, "BackgroundColor™),
get(0, "defaultUicontrolBackgroundColor™))

set(hObject, "BackgroundColor®,[-9 .9 .9]D);
end

% --- Executes on slider movement.

function slider3 Callback(hObject, eventdata, handles)
% hObject handle to slider3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

X

% Hints: get(hObject, "Value®) returns position of slider

% get(hObject, *Min®) and get(hObject,"Max") to determine range of
slider
% --- Executes during object creation, after setting all properties.

global minval;

global maxval;

maxval=get(hObject, "Value™);

if (maxval<minval)
msgbox(sprintf("Please choose Max Value > Min Value®"),"Error®, "Error");
return

end

data3 = strcat(num2str(maxval));
set(handles.text3, "String”,data3);

function slider3 CreateFcn(hObject, eventdata, handles)

% hObject handle to slider3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: slider controls usually have a light gray background.
if isequal(get(hObject, "BackgroundColor®),
get(0, "defaultUicontrolBackgroundColor ™))
set(hObject, "BackgroundCollor®,[-9 -9 .9]);
end

% --- Executes on button press in pushbutton2.

function pushbutton2_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

global tval;

global minval;

global maxval;

global im2;

[M,N]=size(im2);

if (minval<maxval)
for 1=1:M

(i,j)>tval)
(i,j)=maxval;

else
im2(i,j)=minval;
end
end
end
end
axes(handles.axes2);
imshow(im2);

2.2 BIT PLANE SLICING

function varargout = Bit_Plane_Slicing(varargin)
% BIT_PLANE_SLICING MATLAB code for Bit_Plane_Slicing.fig

% BIT_PLANE_SLICING, by itself, creates a new BIT_PLANE_SLICING or
raises the existing

% singleton*.

%

% H = BIT_PLANE_SLICING returns the handle to a new BIT_PLANE_SLICING or
the handle to

% the existing singleton*.

%

% BIT_PLANE_SLICING("CALLBACK®,hObject,eventData,handles,...) calls the
local

% function named CALLBACK in BIT_PLANE_SLICING.M with the given input
arguments.

%

% BIT_PLANE_SLICING("Property®,*Value®,...) creates a new
BIT_PLANE_SLICING or raises the

% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before Bit Plane Slicing_OpeningFcn gets called.

An

% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to Bit Plane_Slicing OpeningFcn via
varargin.

%

% *See GUI Options on GUIDE"s Tools menu. Choose "'GUI allows only one

% instance to run (singleton)".

%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help Bit_Plane_Slicing
% Last Modified by GUIDE v2.5 17-May-2014 20:02:42

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui_State = struct("gui_Name®,
"gui_Singleton”,

mFilename,
gui_Singleton,

"gui_OpeningFcn®,
"gui_OutputFcn®,
"gui_LayoutFcn*®,
"gui_Callback",

it nargin && ischar(varargin{l})

@Bit_Plane_Slicing_OpeningFcn, ...
@Bit_Plane_Slicing OutputFcn, ...
ao. ---

[D:

str2func(varargin{1});

gui_State.gui_Callback
end

if nargout
[varargout{l:nargout}]

else
gui_mainfcn(gui_State, varargin{:});

gui_mainfcn(gui_State, varargin{:});

end
% End initialization code - DO NOT EDIT

% --- Executes just before Bit_Plane Slicing is made visible.

function Bit_Plane_Slicing_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to Bit Plane Slicing (see VARARGIN)

% Choose default command line output for Bit Plane Slicing
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes Bit Plane Slicing wait for user response (see UIRESUME)
% uiwait(handles.figurel);

% --- Outputs from this function are returned to the command line.

function varargout = Bit Plane_Slicing_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

X

% Get default command line output from handles structure
varargout{l} = handles.output;

% --- Executes on selection change in listboxl.

function listboxl Callback(hObject, eventdata, handles)

% hObject handle to listbox1l (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = cellstr(get(hObject,"String")) returns listboxl contents
as cell array
% contents{get(hObject, "Value®)} returns selected item from listboxl

global iml;

contents = cellstr(get(hObject, "String"));
iml= contents{get(hObject, "Value™)};
iml=strcat(iml," .jpg~);

iml=imread(iml);
axes(handles.axesl);
imshow(iml);

% --- Executes during object creation, after setting all properties.
function listboxl CreateFcn(hObject, eventdata, handles)

% hObject handle to listboxl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

=4

% Hint: listbox controls usually have a white background on Windows.
% See ISPC and COMPUTER.
it ispc && isequal(get(hObject, "BackgroundColor™),
get(0, "defaultUicontrolBackgroundColor ™))
set(hObject, "BackgroundColor”®, "white®);
end

% --- Executes on button press in pushbuttonl.

function pushbuttonl_Callback(hObject, eventdata, handles)

% hObject handle to pushbuttonl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global iml;

global im2;

im2=rgb2gray(iml);
axes(handles.axesl);
imshow(im2);

% --- Executes on button press in pushbutton2.

function pushbutton2_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

global im4;
global im2;
global bpl;
global bp2;
global bp3;
global bp4;
global bp5;
global bp6;
global bp7;
global bpS8;

[m, n]=size(im2);

for 1=1:m
for j=1:n
for k=1:8
if k==1
bpl(i,j)=bitget(im2(i,j).k);
else if k==2

bp2(i,j)=bitget(im2(i,j).k);
else if k==3
bp3(i,j)=bitget(im2(i,j),.k);
else if k==4
bp4(i,j)=bitget(im2(i,j).k);
else if k==5
bp5(i, j)=bitget(im2(i,j).k);
else if k==6
bp6(i,j)=bitget(im2(i,j),.k);
else if k==7
bp7(i,j)=bitget(im2(i,j).k);

else
bp8(i,j)=bitget(im2(i,j),.k);
end
end
end
end
end
end
end

end
end
end

axes(handles.axesl18);
imshow(bpl);
axes(handles.axesl7);
imshow(bp2);
axes(handles.axesl6);
imshow(bp3);
axes(handles.axes15);
imshow(bp4);
axes(handles.axesl14);
imshow(bp5);
axes(handles.axes13);
imshow(bp6) ;
axes(handles.axes12);
imshow(bp7);
axes(handles.axesll);
imshow(bp8);

for i=1:m
for j=1:n

ima(i, j)=bpl(i,j)/200+bp2(i,j)/200*2+bp3(i,j)/200*4+bpa(i,j)/200*8+bp5(i,j)/2
00*16+bp6(i, j)/200*32+bp7(i,j)/200*64+bp8(i,j)/200*128;

end
end

axes(handles.axesl19);
imshow(im4);

3 STEGANOGRAPHY

function varargout = Steganography(varargin)
% STEGANOGRAPHY MATLAB code for Steganography.fig

% STEGANOGRAPHY, by itself, creates a new STEGANOGRAPHY or raises the
existing

% singleton*.

%

% H = STEGANOGRAPHY returns the handle to a new STEGANOGRAPHY or the
handle to

% the existing singleton*.

%

% STEGANOGRAPHY (" CALLBACK® ,hObject,eventData,handles,...) calls the
local

% function named CALLBACK in STEGANOGRAPHY.M with the given input
arguments.

%

% STEGANOGRAPHY ("Property®, "Value®,...) creates a new STEGANOGRAPHY or
raises the

% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before Steganography OpeningFcn gets called. An

% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to Steganography OpeningFcn via varargin.
%

% *See GUI Options on GUIDE"s Tools menu. Choose "GUI allows only one
% instance to run (singleton)".

%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help Steganography
% Last Modified by GUIDE v2.5 15-May-2014 16:20:37

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui_State = struct("gui_Name~, mfilename, ...
"gui_Singleton”, gqui_Singleton, ...
"gui_OpeningFcn®, @Steganography OpeningFcn, ...
"gui_OutputFcn®, @Steganography OutputFcn, ...
"gui_lLayoutFcn®, [1 , ---
"gui_Callback"®, [D:

ifT nargin && ischar(varargin{l})

gui_State.gui_Callback = str2func(varargin{l});
end

if nargout

[varargout{l:nargout}] = gui_mainfcn(gui_State, varargin{:});
else

gui_mainfcn(gui_State, varargin{:});
end

% End initialization code - DO NOT EDIT

% --- Executes just before Steganography is made visible.

function Steganography_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to Steganography (see VARARGIN)

% Choose default command line output for Steganography
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes Steganography wait for user response (see UIRESUME)
% uiwait(handles.figurel);

% --- Outputs from this function are returned to the command line.
function varargout = Steganography OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

X

% Get default command line output from handles structure
varargout{l} = handles.output;

% --- Executes on selection change in listboxl.

function listboxl Callback(hObject, eventdata, handles)

% hObject handle to listboxl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = cellstr(get(hObject,"String®)) returns listboxl contents
as cell array
% contents{get(hObject, "Value®)} returns selected item from listboxl

global im;

contents = cellstr(get(hObject, "String~));
im=contents{get(hObject, "Value®)};
im=strcat(im,".jpg");

im=imread(im);

axes(handles.axesl);

imshow(im);

% --- Executes during object creation, after setting all properties.
function listboxl CreateFcn(hObject, eventdata, handles)
% hObject handle to listboxl (see GCBO)

X

% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: listbox controls usually have a white background on Windows.
% See ISPC and COMPUTER.
it ispc && isequal(get(hObject, "BackgroundColor™),
get(0, "defaultUicontrolBackgroundColor ™))
set(hObject, "BackgroundColor™, "white");
end

% --- Executes on button press in pushbuttonl.

function pushbuttonl_Callback(hObject, eventdata, handles)

% hObject handle to pushbuttonl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

global im;
im=rgb2gray(im);
axes(handles.axesl);
imshow(im);

function editl_Callback(hObject, eventdata, handles)

% hObject handle to editl (see GCBO)

» eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

XX

% Hints: get(hObject,"String®) returns contents of editl as text
% str2double(get(hObject, "String”")) returns contents of editl as a
double

global txt;
global t2;
txt=get(hObject, "String")

t2=de2bi (uintl6(char(txt)))

% --- Executes during object creation, after setting all properties.
function editl _CreateFcn(hObject, eventdata, handles)

% hObject handle to editl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

X

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
it ispc && isequal(get(hObject, "BackgroundColor™),
get(0, "defaultUicontrolBackgroundColor®))
set(hObject, "BackgroundColor™, "white");
end

% --- Executes on button press in pushbutton3.

function pushbutton3_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

global im;

global im2;
global bpl;
global t5;

global t6;

global t2;

global imx;
im2=im;

[m, n]=size(im2);

global ni;
global n2;
% n2=0;

for i=1:@m
for j=1:n
bpl(i,j)=bitget(im2(i,j),1);
end
end

[t5, t6]=size(t2);
imx=zeros(t5,t6,8);

for i1=1:t5
for j=1:t6
imx(i,j,1)=t2(i,j);
end
end

for i=1:t5
for j=1:t6
im2(i,j)=im2(i,j)-bpl(i,j)/200+bi2de(imx(i,j));
end
end

axes(handles.axes4);
imshow(im2);

4 HOUGH TRANSFORM

%David Raedy

%Introduction to Computer vision and modeling

%Final Project -- Shape detection with Hough Transforms

%

%Hough transform is used to automatically detect

%features from an image that has has an edge detection

%algorithm applied.

%

%1 have implemented two types of feature extraction:

%lines and circles, both of which involve transforming

%the image from ""feature space'™ into '"parameter space™.

%The methods for extracting line and circle features

%are different enough to warrant separate explanations.

%

%Circle Extraction

%The more intuitive of the methods is circle extraction.

%It is more intuitive to me because the matrix representing

%the parameter space has the same dimensions as the original,

%and the method involves projecting circles using cartesian
%coordinates. Simply stated, each pixel in the edge-detected
%image serves as the centerpoint for a circle of a given radius.
%Circles are projected around the centerpoint, and for each point
%on the circle, the corresponding cell in the accumulator array
%is incremented by one.

%

%The result of projecting these circles of fixed array in the
%hough parameter space is that the centerpoints of circles in
%fFeature space is revealed: 1In parameter space those centerpoints
%will accumulate relatively large values, since the centerpoint
%will appear on the edge of all of the circles formed in
Y%parameter space by the edges of the actual circle in feature space.
%

%The drawback of this technique is that it is computationally
%complex, and requires separate passes for any give radius.

%lt"s also rigid, and only reveals nearly perfect circles.

%

%Line Extraction

%Line extraction operates in a similar vein, but is somewhat more
%abstract -- which is to say, you can view the accumulator matrix
%(parameter space) from circle extraction, and see pretty clearly
%how the process works, including being able to see vestiges of the
%original image. With line extraction, there is no such correlation:
%parameter space inhabits a different-sized matrix for one, and the
%axes represent minimum distance from the origin for a given line on
%the one hand, and angle of the line on the other.

%

%So the Ffirst thing to understand about parameter space for line
%extraction is that there is no one-to-one relationship between
%pixels In the image and cells in the parameter space matrix.
%Rather, each cell in parameter space represents a line that spans
%across the entire image.

%

%The transformation between feature space and parameter space is
%the following:

%Project a line through each edge pixel at every possible angle

%(you can also increment the angles at steps). For each line,
%calculate the minimum distance between the line and the origin.
%Increment the appropriate parameter space accumulator by one.

%The x-axis of parameter space ranges from 1 to the square root of
%the sum of the squares of rows and columns from feature space.

%(This number corresponds to the furthest possible minimum distance
%from the origin to a line passing through the image.

%The y-axis represents the angle of the line.

%Obviously the axes could be switched...

%

%Similarly to the process of circle extraction, the larger the number
%in any given cell of the accumulator matrix, the larger the likelihood
%that a line exists at that angle and distance from the origin.

%

%Transforming from parameter space back to feature space is slightly
%more trouble for lines than circles -- the method 1 employ involves
%the risk of divide-by-zero for one. Also, each line pixel is checked
%to see 1T there is a pixel in edge space, and marked accordingly.

%

%An extra step which I didn"t employ would be to add a step of hysterisis
%to attempt to discover the line segments more definitively.

%

%The main trouble with both methods was finding an appropriate
%threshhold for determining what constitutes a feature. The image
%processing toolkit apparently has a local maximum detector, which
%would have been very helpful. 1 relied on a more blunt measure,
%which was a threshold as a percentage of the maximum accumulator
%value.

%

%canny edge detector section

%

%img=imread(“parallelo.jpg”);
img=imread("Amazing Scene in Burma.jpg");
%img=imread("scene_shapes_a.png®);

F=(rgb2gray(img));

%display original image in grayscale
figure(l);

imagesc(F);

colormap(gray);

axis image;

% compute Gaussian

sig = 1.5;

X = Floor(-3*sig):ceil(3*sig);
GAUSS = exp(-0.5*x.72/sig"2);
GAUSS = GAUSS/sum(GAUSS);
dGAUSS = -x.*GAUSS/sig”2;

% convolute the image with kernel
Kx = GAUSS®*dGAUSS;
Ky Kx*®;

Ix=conv2(F, Kx, "same®);
ly=conv2(F, Ky, "same®);

%determine a range and scale for tossing out noise later
%(only look at relatively strong edges)

maxIx = max(max(Ix));

minlx = min(min(Ix));

scalelx = (maxIx-minlx)/10.0;

maxly = max(max(ly));

minly = min(min(ly));
scalely = (maxly-minly)/10.0;

%threshhold is a little arbitrary
strThresh = (0.5*scalelx)”2 + (0.5*scalely)”2;

%initialize matrices for edge image and edge strengths
[rows,cols] = size(F);
Edges = zeros(rows,cols);

%edges binary records 1 for edge pixel and O otherwise
%used in hough transform

EdgesBinary = zeros(rows,cols);

Strength = zeros(rows,cols);

%calculate edge strengths
Strength = IxX."2 + ly."2;

%define thresholds for arctan results
% of ly/Ix (to determine orientation)
pi = 22.0/7.0;

pi8 = pi/8;

pi2 = 4.0*pi8;

threepi8 = 3.0 * piS8;

%value holds arctan orientation value temporarily for each pixel
value = 0;

%skip outermost pixel to avoid out of bounds errors
for x = 2:rows-1
for y = 2:cols-1

%set the edge image pixels to white
Edges(x,y) = 255;

%only proceed with orientation and edge strength if the result will be
defined
%and 1T edge strength is above threshhold
if(abs(Ix(x,y)) > 0.001 & Strength(x,y) > strThresh)

%get orientation
value = atan(ly(x,y) 7 Ix(X,y));

%horizontal orientation
if (value <= pi8 & value >= -1.0*pi8)
if Strength(x,y) > Strength(x,y-1) & Strength(x,y) >
Strength(x,y+1)
Edges(x,y) = O;
EdgesBinary(x,y) = 1;
end

%negative slope orientation
elseif value < threepi8 & value > 0.0
if Strength(x,y) > Strength(x-1, y-1) & Strength(x,y) >
Strength(x+1, y+1)
Edges(x,y) = 0O;
EdgesBinary(x,y) = 1;
end

%positive slope orientation
elseif value > -1._0*threepi8 & value < 0.0
if Strength(x,y) > Strength(x-1, y+1) & Strength(x,y) >
Strength(x+1, y-1)
Edges(x,y) = O;
EdgesBinary(x,y) = 1;
end
else
%vertical orientation
if Strength(x,y) > Strength(x-1,y) & Strength(x,y) >
Strength(x+1,y)
Edges(x,y) = 0;
EdgesBinary(x,y) = 1;
end
end
end
end
end

%this Ffigure will display the canny edge results
figure(2);

image(Edges);

colormap(gray);

axis image;

%begin hough transform stage, starting with lines
%

%variables controlling granularity of line search
dist_step = 1;

angle_incr = 2;

%set up Accumulator matrix based on size of image
[rows, cols] = size(EdgesBinary);

p =1 : dist_step : sgrt(rows”™2 + cols™2);

theta deg = 0 : angle_incr : 360-angle_incr;
Accumulator = zeros(length(p), length(theta_deg));

%get indices of all edge pixels
[y_ind x_ind] = find(EdgesBinary > 0);

%iterate through each pixel
for i = 1 : size(x_ind)

theta_ind = 0;

%iterate through each angle through pixel
for theta_rad = theta _deg*pi/180

theta_ind = theta ind+1;

%determine min distance to line calculated from origin
roi = x_ind(i)*cos(theta _rad) + y_ind(i)*sin(theta_rad);

if roi >= 1 & roi <= p(end)
temp = abs(roi-p);
mintemp = min(temp);
rad_ind find(temp == mintemp);
rad_ind rad_ind(1);

%add 1 to accumulator for this point at this angle
%the result is a matrix of numbers of lines,
%described by angle, and the point at which the
%line is a minimum distance from the origin
%naturally this is not a 1 to 1 relationship
%between line segments in the original image
%and lines described in hough parameter space
Accumulator(rad_ind, theta_ind) = Accumulator(rad_ind,theta_ind)+1;
end
end
end

%set threshold as percentage of max

thresh = 0.5 *(max(max(Accumulator(:))));

% get indices of lines (in parameter space) above threshold
[radius angle] = find(Accumulator > thresh);

temp_acc = Accumulator - thresh;
hough_rad = [];
hough_angle = []:

%take indices of instances where Accumulator > thresh
%and create vectors of distances from origin and angle
%From origin of line normal
for i = 1:length(radius)
it temp_acc(radius(i), angle(i)) >= 0
hough_rad = [hough_rad; radius(i)];
hough_angle = [hough_angle; angle(i)];
end
end

%adjust distance and angle to account for quantization level
%(steps/increments) in searching for lines

hough_rad = hough_rad * dist_step;

hough_angle = (hough_angle * angle_incr) - angle_incr;

%visualize the parameter space for lines

%x-axis Is distance from origin in feature space
%y-axis is angle of line

Ffigure(3);

image(Accumulator);

colormap(gray);

axis image;

%this Ffigure will display the lines and circles
figure(4);

image(Edges);

colormap(gray);

axis image;

hold on;

[rows,cols] = size(Edges);

%need to convert degrees to radians again!!
hough_angle = hough_angle*pi/180;

for z = 1 : size(hough_rad)
for y =1 - rows

%handle divide by zero situations
%(sin 0) =0
if hough_angle(z) == 0

X = hough_rad(z);

if Edges(y,round(x)) == 0
plot(round(x),y, "b+");
else
plot(x,y,"c-");

end

else
X = (hough_rad(z) / cos(hough_angle(z))) - (y *
sin(hough_angle(z))) 7/ cos(hough_angle(z));

%make sure y is within image matrix dimensions
%so that it can be plotted (for example y=0.34
%will give an error
if round(x) > 0 & round(x) < cols
%plot a blue "+" where line intersects edge
if Edges(y,round(x)) ==
plot(round(x),y, "b+");
else
plot(round(x),y, "g+");
end
end
end
end

%handle divide by zero (cos 90)=0

x =1 : cols
if hough_angle(z) == 90
y = hough_rad(z);

for

%plot a blue "+" where line intersects edge

if Edges(y,round(x)) ==
plot(x,round(y), "b+");
else
plot(x,round(y), "c-");

end

end
end
end

%now go after circles

%rad describes the radius of the circle being matched
%(the radius of the template being imposed on the image)
for rad = 50:75

%avoid hundreds of duplicate calculations
rad_sq = rad"2;

%accumulator for circles
AccCircles = zeros(size(EdgesBinary));

%grab indices of edge points in image
[yIndex xIndex] = find(EdgesBinary > 0);

for 1 = 1 : length(xIndex)
left = xIndex(i)-rad;
right = xIndex(i)+rad;
%allow for circles off the edge
it (left<l)
left=1;
end

%and the other edge

it (right > size(EdgesBinary,2))
right = size(EdgesBinary,2);

end

%by projecting a circle around the edge points
%for each edge point, and adding one to the
%accumulator for each calculated point on that circle
%the effect is that the center point of any circle
%will have a relatively large value in the accumulator
%
%here the circle formula is applied, where
%x_offset iterates over the center+- radius
%and y_offset is calculated:
%y offset = center_y +- sqrt(radius™2 - (center_x - x_offset)"2
for x_circ = left : right

rhs = sqrt(rad_sq - (xIndex(i)-x_circ)"2);

y circ_a = ylndex(i) - rhs;
y circ_b = yIndex(i) + rhs;
y_circ_a = round(y_circ_a);
y_circ_b = round(y_circ_b);

if y _circ_a < size(EdgesBinary,1) & y circ_a >= 1
AccCircles(y_circ_a, x_circ) = AccCircles(y_circ_a, x _circ)+1;

end

if y circ_ b < size(EdgesBinary,1l) & y circ b >= 1
AccCircles(y_circ_b, x _circ) = AccCircles(y_circ_b, x circ)+1;

end

end
end

%set threshold, arbitrarily
thresh = 0.9 * max(max(AccCircles(:)));

% get centers of circles above threshold

xcoord = [];

ycoord = [];

[y_center x_center] = find(AccCircles > thresh);

temp_acc = AccCircles - thresh;
%and add to x and y coordinate value arrays
for i = 1:length(x_center)
if temp_acc(y_center(i), x_center(i)) >= 0
xcoord = [xcoord; x_center(i)];
ycoord = [ycoord; y center(i)];
end

theta = [0:1:2*pi+1];
[xsize,ysize] = size(xcoord);

%reconstruct circles from centerpoints
for n_circ = 1:xsize

plot(xcoord(n_circ), ycoord(n_circ), "*");

X = rad * sin(theta);
= rad * cos(theta);

to initialize xoff/yoff to right size...

is
X3
Yy

%reset values to correct offset
xofF(:) = xcoord(n_circ);
yoff(:) = ycoord(n_circ);

plot(x+xoff, y+yoff, "c");

end
end

%Finally visualize parameter space of circles
figure(b);

image(AccCircles);

colormap(gray);

axis image;

5 PERIODIC NOISE REMOVAL: NOTCH FILTER

%6%9%%%%6%6%6%%%%% % %6%6%%% %% % %%6%%% %% % % %6%%% %% % % %%6%6% %% % % %%6%6%%% % % % %%%% %% %
%% im: EInput image
%% FT: Fourier transform of original image
%% mask : mask used for band reject filtering
%% FT2 : Band pass filtered spectrum
%% output : Denoised image
%%
%% Author: Krishna Kumar
%% Date: 25 Mar 2014
%%
%%0ne of the applications of band reject filtering is for noise removal
%%in applications where the general location of the noise component in
%%the frequency domain is approximately known.
%%
%% This program denoise an image corrupted by periodic noise that can be
%% approximated as two-dimensional sinusoidal functions using a band
%% reject filters.
%%You can adjust the radius of the filter mask to apply for a different
%%image -
%%%%%%6%6%6%%%%%%%6%6%% %% %% %%6%%% %% % % %6%6%% %% % % %%6%% %% % % %%6%6%% %% % % %6%6%% %% %
clc;
clear all;
close all;
im = imread(" imagename.extension®);
figure, imshow(im);
FT = fft2(double(im));
FT1 = fftshift(FT);%finding spectrum
imtool (abs(FT1),[D:

m = size(im,1);

n = size(im,2);

t = 0:pi/20:2*pi;

xc=(m+150)/2; % point around which we filter image

yc=(n-150)/2;

r=200; %Radium of circular region of interest(for BRF)
rl = 40;

Xcc = r*cos(t)+xc;

ycc = r*sin(t)+yc;

xccl = rl*cos(t)+xc;

yccl = rl*sin(t)+yc;

mask = poly2mask(double(xcc) ,double(ycc), m,n);
maskl = poly2mask(double(xccl),double(yccl), m,n);%generating mask for
filtering

mask(mask1)=0;

FT2=FT1;
FT2(mask)=0;%cropping area or bandreject filtering

imtool (abs(FT2),[1);
output = iffe2(ifftshift(FT2));
imtool (output,[1);

	DIP MATLAB Acknowledgement
	Digital Image Processing MATLAB Notes - Akshansh
	DIP MATLAB 27.3.2014
	DIP MATLAB Cover Page
	Editing Images in MATLAB (Programming)
	Creating basic GUI and reading images

	DIP MATLAB Assignments
	DIP (EEE F435) MATLAB Extra Assignments
	DIP Extra MATLAB Assignment - Akshansh
	1 Power Law Transformation
	2
	2.1 Intensity Level Slicing
	2.2 Bit Plane Slicing

	3 Steganography
	4 Hough Transform
	5 Periodic Noise Removal: Notch Filter

	generateAppearances:

